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a b s t r a c t

The influence of a high-frequency progressive vibration on the onset of thermal convection in a two-
layer system of viscous immiscible fluids is investigated. The interface is deformable, the outer walls
are rigid, and heat-transfer conditions of a general form are assigned on them. The starting equations
are taken in the generalized Oberbeck–Boussinesq approximation. An averaging method is employed.
It is shown that the averaged problem contains a vibrogenic external force and vibrogenic stresses that
are proportional to the square of the amplitude of the vibration rate. A quasi-equilibrium solution that
satisfies the closure condition is found, and its stability is investigated. It is established that, unlike the
case of a single-layer fluid, the horizontal component of the vibration influences the onset of convection
and have a destabilizing effect. The vertical component stabilizes the two-layer system by increasing
the surface tension. The long-wavelength asymptotic is investigated. Calculations are performed for the
silicone oil–Fluorinert and acetonitrile–n-hexane systems.

© 2009 Elsevier Ltd. All rights reserved.

There are reviews of the main publications on vibrational convection for regions with a free surface.1–3 The influence of vertical high-
frequency vibration on the onset of convection in a two-layer system has been studied.4–7 The results of analyses of the averaged equations
for a two-layer system with a non-deformable interface, as well as the results of a physical experiment which showed that vertical high-
frequency vibrations smooth the interface, have been presented.4–6 By analogy with a previously proposed approach,1 an averaging method
was employed in the case of vertical vibrations, and model systems that characterize the influence of the physical parameters on the onset
of vibrational convection in a two-layer fluid were investigated.7 The stability of the equilibrium of a two-layer system of fluids with similar
densities was investigated; the heat fluxes on the outer boundaries were specified, the interface was deformable, and the thermocapillary
effect was neglected; maps of the monotonic and vibrational instability were constructed, and the long-wavelength asymptotic was studied.8

The approach previously developed for a single-layer system1,2 will be used below. An averaging method will be applied to the equations
in the generalized Oberbeck–Boussinesq approximation, the equilibrium solution of the averaged problem will be found, and its stability
will be investigated.

1. Statement of the problem

Consider a system consisting of two layers of viscous immiscible fluids: an upper layer of thickness H1 and a lower layer of thickness H2.
The superscript k = 1 corresponds to values of quantities in the lower layer, and the superscript 2 corresponds to values in the upper layer.
Heat-exchange conditions of general form are specified on the rigid outer boundaries so that there is a transverse temperature gradient in
each layer. The origin of coordinates is chosen on the flat interface, the x3 axis is directed along the force of gravity, and � is its unit vector.
The interface x3 = �(x1, x2, t) is assumed to be deformable, and surface tension forces with coefficient �̂ = �0 − �T T̂k (here T1 = T2) act on it.
The temperature is measured relative to its value on the flat equilibrium interface. The fluids are assumed to be slightly non-isothermal,
so that the densities depend linearly on the temperature: �̂k = �̂0k(1 − �kT̂k). It is assumed that the system as a whole performs vibration
along the vector s = (cos �, 0, sin �) according to the law x3 = (b̂/�̂)f (�̂)t, where f is a 2�-periodic function with a zero mean, b̂ is the
amplitude of the vibration rate, and �̂ is the vibration frequency. We write the dimensionless convection equations in the generalized
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Oberbeck–Boussinesq approximation1,9,10,†

(1.1)

Here

where �k are the relative velocities, pk are the pressures, Tk are the temperatures, K is the average curvature, 	k are the Boussinesq
parameters, b is the dimensionless amplitude, 
k �k, �k and k are the dynamic viscosity, kinematic viscosity, thermal diffusivity and
thermal conductivity, C is the surface tension coefficient, and M is the Marangoni number. The dimensionless quantities were introduced
using the length scale L, the time scale T, the density �, the temperature gradient A and the thermal conductivity .

2. The high-frequency asymptotic

Next we will consider the case in which the frequency � is high, the amplitude of the vibration rate b is finite, and the vibration period is
less than the characteristic hydrodynamic times, so that the vibrational boundary layers can be disregarded. In addition, we will assume that
the condition for using the model of an incompressible fluid holds, i.e., the acoustic wavelength must be much greater than the characteristic
dimension.

We will apply the Krylov–Bogolyubov averaging method to problem (1.1) with the assumptions made above. Note that there are also
other approaches to the derivation of averaged equations, for example, the multiscale expansion method. However, as was noted,11,12 all
the existing approaches lead to the same averaged equation, although the highest terms in the asymptotic are different. This conclusion is
confirmed by the results of numerous studies on vibrational convection (see, for example, Refs 9 and 10).

We will next derive the averaged equations using to the previously developed scheme.1,2 In addition to the slow time t, we introduce the
fast time � = �t. The averaging method gives an asymptotic representation of the solution of system (1.1) in the form of the sum of smooth
and fast components with a zero mean over the time �. In the problem under consideration, we will seek an asymptoteit of the form

(2.1)

In the scheme of the averaging method, the fast components �̃k, p̃k, �̃, T̃ k are uniquely specified by the conditions, obtained by isolating
the leading terms in � in the equations and boundary conditions of problem (1.1). For them we obtain the problem

(2.2)

† See also: Lyubimov DV. Non-linear Problems in the Theory of Rapidly Fluctuating Convective Flows. Doctoral thesis. Perm: Izd Perm Gos Univ; 1994.
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(2.3)

As a result, the fast unknowns are expressed in terms of the smooth temperature T̄ k.
We will seek a 2�-periodic solution with respect to the fast time � in the form

(2.4)

Substituting expressions (2.4) into equalities (2.2) and boundary conditions (2.3), for the unknown amplitudes wk and �k we obtain
the problem

Next, we substitute expressions (2.1), taking equalities (2.4) into account, problem (1.1). Averaging over the fast time � and retaining
terms of the order of unity as � → ∞, we obtain a closed autonomous system for the smooth components �̄k, p̄k, T̄k, �̄

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

As a result of the averaging, vibrogenic forces Fk
� appeared in the equations of motion (2.5), and the vibrogenic stresses �� , which are

proportional to the vibration parameter Re2 = b2〈f′2〉, appeared in the dynamic boundary condition (2.8). These quantities are defined by
the expressions

We include the potential component isolated in the expression for Fk
� , assuming that
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Then the remaining terms in this expression are of the order of 	k or above as 	k → 0. Setting 	k = 0 in the inertial terms, we arrive at the
averaged problem

(2.10)

One of the advantages of the averaging method is that the investigation of the stability of (2�/�)-periodic solutions of the original
problem reduces to studying the stability of the corresponding steady-state solutions of the averaged problem. This has been rigorously
proved for regions with a rigid boundary.13,14 In addition, formulae (2.4) enable us to find oscillating corrections and thereby to obtain the
leading terms of the high-frequency asymptote (2.1).

3. The equilibrium solution. The eigenvalue problem

We will assume that the heat-transfer conditions are such that problem (2.10) has a quasi-equilibrium solution of the form

(3.1)

which satisfies the closure condition of the pulsation flow rates

(3.2)

Here the gradients A1 and A2 are related by the equality 1A1 = 2A2.
We linearize system (2.10), setting
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Assuming that the perturbations are smooth, we introduce stream functions, setting

We next eliminate the pressures Pk and ¯̊ k and represent the perturbations in the normal form

As a result, we arrive at the eigenvalue problem

(3.3)

(3.4)

(3.5)

When x3 = 0, the boundary conditions have the form

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

On the rigid walls x3 = h1 and x3 = –h2, we have the boundary conditions

(3.11)

Equalities (3.3) contain vibrational terms, beginning from the first order in the Boussinesq parameter 	k, and boundary conditions (3.7)
and (3.10) contain these terms from the zeroth order. If the fluids are homogeneous and have equal densities, gravity and vibration do not
influence the stability of the quasi equilibrium.

In order to isolate the leading terms as 	k → 0, we seek solutions of Eqs (3.4) in the form

For the functions �k
0 we obtain the problem
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The solution of this problem consists of the functions

(3.12)

(3.13)

where

Retaining only terms that are no higher than the first order in 	k in Eqs (3.3)–(3.11), we arrive at the eigenvalue problem

(3.14)

(3.15)

The boundary conditions for x3 = 0 are

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

The boundary conditions for x3 = h1 and x3 = −h2 are

(3.22)

where Grk = 	kQ0 and Gv1k = 	kRe2 are the gravitational and vibrational Grashof numbers, 	 = 	2/	1, and the cik are the coefficients in the
expansion of ck in series in 	k:

To investigate the stability of equilibrium (3.1), we will derive the dispersion relation by the standard method, i.e., we solve problem
(3.14)–(3.22) without boundary condition (3.20), and then substitute the solution obtained into it. As a result, we arrive at the solvability
condition

which we will not present here because of its length.‡ Either the eigenvalue parameter � or the critical values of the parameters can be
found from the transcendental equation obtained in explicit form.

‡ For the detailed mathematical steps, see Zen’kovskaya SM, Novosyadlyi VA. The influence of high-frequency vibration in an arbitrary direction on the onset of convection
in a two-layer system with a deformable interface. Article deposited at the All-Union Institute of Scientific and Technical Information (VINITI). 29 June 2007, No. 683-V2007.
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In the case of homogeneous fluids, vibrational terms are contained only in boundary condition (3.21). At a fixed wavelength the angle
at which vibration does not influence the stability can be found from it:

(3.23)

4. The long-wavelength asymptotic

The long-wavelength asymptoteit has been investigated in numerous studies when there is no vibration. The asymptotic of the Marangoni
number was constructed in Ref. 15 for a deformable interface in the case of monotonic instability in the form M = M0 + �2M1 + . . ., where the
coefficient M0 is proportional to the dimensionless gravitation parameter. The long-wavelength asymptotic of the vibrational instability in
the form M = M0 + �2M1 + . . ., � = �2�1 + . . . was considered in Ref. 16, and formulae for M0 and �1 were presented. The leading terms of the
asymptotic of the form M = �–2M1 + . . ., � = ��1 + . . . for the case of a non-deformable interface were found in Ref. 17.

In the present study the leading terms in the long-wavelength asymptotic of problem (3.14)–(3.22) were constructed for a deformable
interface and homogeneous fluids. In the case of monotonic instability, we found an asymptotic of the form

(4.1)

We present the formulae for the leading terms in the case of isothermal boundaries:

(4.2)

The sign of M depends on the ratio Qr/(
1h2
2 − 
2h2

1). Under conditions of weightlessness, the value of Qr is negative when there are
vibrations. Note that an asymptotic of form (4.1) does not exist if 
1h2

2 − 
2h2
1, as well as in the case of outer boundaries that do not conduct

heat.
For vibrational instability we constructed an asymptotic of the form

It was found that the leading terms do not depend on gravity, surface tension or vibration. The corresponding formulae are not presented
here because of there length, but they were used for comparison with numerical results. This asymptotic was previously constructed for a
single-layer fluid.18 In the case where the two-layer system is similar to a single-layer system, the asymptotic values are identical.

5. Results of calculations

The critical Marangoni numbers were calculated for homogeneous fluids in the cases of monotonic and vibrational instability. To test
the formulae, the results were compared with the results in Refs 1–3, 15 and 19 and with the asymptotic formulae as � → 0.

We present the results of the calculations for an acetonitrile–n-hexane system19 with a total thickness of 4.5 mm (system AH) and a
silicone oil–Fluorinert system20 with an overall thickness of 2 mm (system SF) in the case of weightlessness.

The calculations were first performed for small values of the wave number � and were compared with the long-wavelength asymptotic.
In the case of monotonic instability, from formulae (4.2) for system SF for all values of � and Re2 = 10 it was found that

(5.1)
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Fig. 1.

Fig. 2.

Fig. 3.
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Fig. 4.

The values of M0 and M1 and the functions �k
0 and �k

1 depend on the angle �:

For the same system SF the long-wavelength asymptotic of the vibrational instability gives M0 = –84401.735 and c0 = 10.117. When � = 0.01,
the results obtained from solving the transcendental equation differ from the asymptotic results by less than 1%. Neutral curves M(�) of
the monotonic instability for different values of the angle � and Re2 = 10, which corresponds to weak vibration, are presented in Fig. 1. As
can be seen, the influence of vibration shows up when 0 < � < 1.

Fig. 2 presents neutral curves M(�) of monotonic instability for system AH. The vibration, which includes a horizontal component, leads
to the appearance of discontinuities on the monotonic instability curves, which are associated with Kelvin–Helmholtz instability. Fig. 3
presents graphs of the stream function � and the temperature � against the depth of the layer for system AH and the value � = 2.8035, at
which a discontinuity occurs on the curve for Re2 = 108 and � = �/6 in Fig. 2. Normalized values of the stream function and the temperature
are plotted along the horizontal axis. It can be seen that the temperature �(z) has a discontinuity at z = 0, which indicates to deformation
of the interface due to vibration.

It was found as a result of the calculations that under the effect of vibration, the neutral vibrational instability curves can consist of two
branches, viz., an unclosed branch (the solid curves) and a closed branch (the dashed curves). The branches for � = �/2 and system SF are
shown in Fig. 4.

6. Conclusion

We have shown that the influence of high-frequency vibration on a two-layer system differs from its influence on a single-layer system.
As was established in Ref. 1, when there is a free deformable boundary, horizontal vibrations (� = 0) do not influence the stability of the quasi
equilibrium, and when � /= 0, they stabilize it. For a two-layer system the presence of a horizontal component results in destabilization, and
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the presence of a vertical component results in stabilization. The greatest destabilization is occures when � = 0, and the greatest stabilization
occures when � = �/2.
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